1、相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。
2、 坐标系是理科常用辅助方法。如果物体沿直线运动,为了定量描述物体的位置变化,可以以这条直线为x轴,在直线上规定原点、正方向和单位长度,建立直线坐标系。一般来说,为了定量地描述物体的位置及位置的变化,需要在参考系上建立适当的坐标系(coordinate system)。(1)
3、在此期间,笛卡尔对哲学、数学、天文学、物理学、化学和生理学等领域进行了深入的研究且致力于哲学研究发表了多部重要的文集,并通过培养过帕斯卡的梅森神父与欧洲主要学者保持密切联系。
4、由于这个问题的困扰,使得他不断地苦思冥想。终于有一天,笛卡尔大叫一声:“我思故我在”,于是就有了我们这篇文章的标题,一切都开始变得明朗起来了。。。
5、一位已逾知天命之年的老人在路边邂逅了一位18岁的公主,他因为才华横溢而被公主的父亲选中当公主的数学老师。日日耳鬓厮磨,公主和老人产生了不伦之恋。国王知道后,一气之下将老人放逐,并禁止他们之间的任何交流。流离失所的老人身染沉疴,寄去的十二封书信如石沉大海,杳无回音。当写第十三封信时,他气绝身亡了,信中只有一个简单的数学公式:r=a(1-sinθ)。国王看不懂,遂将全国的数学家请来,但无人能解开谜团,于是国王很放心,将这封信交给了闷闷不乐的公主。公主收到信后立刻明白了恋人的意思。她用老人教给她的“坐标系”将这个方程画了出来(见图8-1)。(坐标与笛卡尔的故事)。
6、突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会功夫,蜘蛛又顺着丝爬上去,在上边左右拉丝。(坐标与笛卡尔的故事)。
7、二维的直角坐标系是由两条相互垂直、0点重合的数轴构成的。在平面内,任何一点的坐标是根据数轴上对应的点的坐标设定的。在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。采用直角坐标,几何形状可以用代数公式明确的表达出来。几何形状的每一个点的直角坐标必须遵守这代数公式。
8、因此要灭除这个“邪恶天才”,笛卡尔在完全解除了他与世界的所有联系后,发现一个观点是可以确定的:我是一个有思想的东西。
9、象限(Quadrant),是平面直角坐标系(笛卡尔坐标系)中里的横轴和纵轴所划分的四个区域,每一个区域叫做一个象限。
10、每天顶着凛冽寒风到炉火熊熊的宫殿里上课,上完课再顶着凛冽寒风回家的笛卡尔很快感冒了,这感冒又发展成了肺病。
11、在历史上,笛卡尔和克里斯蒂娜的确有过交情。但笛卡尔是1649年10月4日应克里斯蒂娜邀请才来到瑞典,而当时克里斯蒂娜已成为了瑞典女王。
12、ρ=a(1-sinθ)在数学上叫作极坐标方程。这里ρ(希腊字母,发ro音)被称为极径,θ(也是希腊字母,theta,会发英语单词--剧院,就会发它的音)被称为极角。解析几何里,任何一个极坐标轴上的点都可以用两个参数来表示,极径和极角。
13、利用两组对边分别平行的四边形是平行四边形我们可以画出符合条件的点有三个。
14、关于笛卡尔创建坐标系的过程,有一个生动的小故事,据说有一天,笛卡尔生病卧床,病情很重,尽管如此,他还反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形与代数方程结合起来,也就是说能不能用几何图形来表示方程呢?要想达到此目的,关键是如何把组成几何图形的点和满足方程的每一组“数”挂上钩,他苦苦思索,拼命琢磨,通过什么样的方法,才能把“点”和“数”联系起来,突然,他看见屋顶上的一只蜘蛛,拉着丝垂了下来,一会儿功夫,蜘蛛又顺着丝爬了上去,在上边左右拉丝,蜘蛛的“表演”使笛卡尔的思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数组确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置就可以用这三根数轴上有顺序的三个数来表示。反过来,任意给一组三个有顺序的数也可以在空间中找出一点与之对应。同样道理,用一组数(x,y)可以表示平面上的一个点,平面上的一个点也可以用一个有顺序的数组(x,y)来表示。
15、这就是数学史上著名的“心形线”。故事中的公主叫克里斯汀,老人叫勒内·笛卡儿(1596—1650),这个坐标系叫“笛卡儿坐标系”。只是这个故事是后人编的,就像人们宁愿相信伽利略真的爬上了比萨斜塔一样,故事永远都比现实生动。最初的笛卡尔坐标系笛卡儿出生于法国,比伽利略小32岁。他是一位伟大的哲学家、数学家、物理学家,但是这人有一点不好——身体不好,这大概是从娘胎就带来的。在他一岁的时候,他的母亲因为肺结核散手人寰,他也差点在某次生病时夭折。好在有父亲的悉心照料,他才顽强地活了下来,随后取名勒内(意为“重生”)。他的父亲后来再婚,他便由外婆带大。笛卡儿的身体一向虚弱,所以上学后老师允许他在床上多躺一会儿,但他并没有真的休息,他的脑海里总是翻腾着奇思怪想。这些想法能把老师甚至父亲惹毛,可能他的父亲因此不怎么喜欢他。父子之间的隔阂让笛卡儿备感孤独,而孤独是独自旅行的最好理由,成年后的笛卡儿总喜欢周游各国。
16、的含义就是字面上的含义:Duang表示无时间性的瞬间,Sou~表示有时间性的慢动作。那么引力作用无非有以下两种看法。
17、在瑞典这个浪漫的国度里,一段纯粹、美好的爱情悄然萌发。
18、后来,笛卡尔被瑞典国王招进宫里做了公主格里斯汀的数学老师。克里斯汀从此走进了奇妙的数学的坐标世界,她对曲线着了迷。她与笛卡尔每天都朝夕相处形影不离,这使笛卡尔与克里斯汀产生了爱慕之心。
19、心形线的平面直角坐标系方程表达式分别为x^2+y^2+a*x=a*sqrt(x^2+y^2)和x^2+y^2-a*x=a*sqrt(x^2+y^2)。
20、笛卡尔到死的时候都没有收到公主的回信,他以为公主不要他了,悲痛欲绝。但他仍然在心底爱着公主。
21、然而,没过多久,他们的恋情传到了国王的耳朵里。国王大怒,下令马上将笛卡尔处死。在克里斯汀的苦苦哀求下,国王将他放逐回国,公主被软禁在宫中。
22、笛卡尔坐标系就是直角坐标系和斜坐标系的统称。
23、国王去世后,克里斯汀继承王位,登基后,她便立刻派人去法国寻找心上人的下落,收到的却是笛卡尔去世的消息,留下了一个永远的遗憾……
24、由图可知此时点B在第四象限,AM=BM=所以此时点B的坐标为(-1).
25、有了数对,就能很容易的表示出某一点的位置。
26、那时,落魄、一文不名的笛卡尔和国王最宠爱的女儿克里斯汀相遇了,几天后,他意外地接到通知,国王聘请他做小公主的数学老师。
27、有一天克莉丝汀的马车路过街头,发现了笛卡尔是在研究数学,公主便下车询问,最后笛卡尔发现公主很有数学天赋。
28、据说有天笛卡儿习惯性地躺在床上思考,突然看到角落里有只蜘蛛正在结网,他一下子醒悟过来。他想如果把蜘蛛看成一个点,而把墙角看成3个数轴,那么空间中蜘蛛的位置就可以用这3个数轴的坐标确定下来;反之,如果确定了一个坐标,那么就可以确定这个点的位置,如图8-2所示。这就是最初的笛卡儿坐标系。
29、现代有人甚至认为她是女同性恋者,其中一个理据是她喜欢穿着男人衣服,或在服装上同时展现男性和女性风格──但克里斯蒂娜说穿着男装鞋子是为了方便。
30、如图所示,利用上述线段长的求法,设点B(x,1),
31、(数学之美)你从没见过的数学图形!让孩子长长见识!
32、她出生时被误认为男孩,国王把她当男孩抚养,所以她即位宣誓时自称“国王”而非“女王”……对于她长大之后,wiki词条中这样写道:
33、这就是亚里士多德(Aristotélēs)逻辑命题论证的三段论:
34、(数学故事)数学史上的重大危机——无理数的发现
35、他想用一个方法表示平面上的一个点。但是笛卡儿无论怎么尝试,都无法用一个数来确定点的位置!有一次他生病了,躺在床上,看到墙角有蜘蛛在织网,蜘蛛网上有很多的交点,这些点是横着和竖着的蜘蛛丝相交而成的。
36、在直角坐标系中有点AB(0),试在坐标系中找一个点C,使得以点O、A、B、C为顶点的四边形为平行四边形。
37、这个世界并不乏天才,缺少的只是发现天才的那双眼睛和培养天才的正确方式。
38、小编觉得这篇文章对广大的数理宅男还是很励志的,“学好数学,推倒王女!”
39、一般的我们认为两条数轴的原点是重合的,两条数轴的正方向是向上和向右的,两条数轴的单位长度是相同的。(其实这些都因研究问题的不同而不同)
40、与x轴平行的直线上的点纵坐标相同,横坐标不同。
41、大家都看过景田百岁山的广告吧,其实这个广告跟笛卡尔有关。
42、(数学故事)什么?1+2+3+4+5+…竟然等于负十二分之一
43、然而,这种信件在当时十分流行,包括克里斯蒂娜写给从未相遇,但仰慕其写作的女人的信件。后来在罗马时,她跟阿佐利诺枢机的关系亲昵。
44、天花板上,一只蜘蛛从墙角慢慢地爬过来,吐丝结网,忙个不停。笛卡尔想如何去计算蜘蛛走过的路程。他先把蜘蛛看成一个点,那么这个点离墙角有多远呢?离墙的两边有多远?病中的他思考着,又昏昏沉沉地睡着了。
45、相交于原点的三条不共面的数轴构成空间的仿射坐标系。三条数轴上度量单位相等的仿射坐标系被称为空间笛卡尔坐标系。三条数轴互相垂直的笛卡尔坐标系被称为空间笛卡尔直角坐标系,否则被称为空间笛卡尔斜角坐标系。
46、我们需要掌握给定点的位置确定点的坐标;以及给定坐标确定点所在的位置(象限)。
47、这在当时是很正常的事情,韦达长年给亨利四世打工,欧拉童鞋也曾经应叶卡捷琳娜女皇的邀请在俄国呆过,也没见他干出什么有伤风化的事。
48、突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会功夫,蜘蛛又顺着丝爬上去,在上边左右拉丝。
49、国王去世后,克里斯汀继承了王位,她登基后,她便立刻派人去法国寻找心上人的下落,等到的却是笛卡尔去世的消息。
50、小公主的数学在笛卡尔的悉心指导下突飞猛进,笛卡尔向她介绍了自己心形线和研究的新领域--直角坐标系。每天形影不离的相处使他们彼此产生爱慕之心,公主的父亲国王知道了后勃然大怒,下令将笛卡尔处死,小公主克里斯汀苦苦哀求后,国王将其流放回法国,克里斯汀公主也被父亲软禁起来。
51、坐标的思想是法国数学家、哲学家笛卡尔所创立的。
52、那时,落魄、一文不名的笛卡尔过着乞讨的生活,全部的财产只有身上穿的破破烂烂的衣服和随身所带的几本数学书籍。
53、对于天体间引力的运行方式,笛卡儿选择了第一个,那就必须为引力寻找一个传递介质,笛卡儿想到了以太。
54、前面两个点虽说有同学可以直接看出,但是我们要清楚解决的方法其实就是例题一的做法。第三个点我们也可以通过证明△AON≌△BCM来求解。
55、后人提起德意志三十年战争,基本上就只记得“新教的保护者”“北方雄狮”古斯塔夫同学带着瑞典大军干死蒂利老爹,和当时另一名将瓦伦斯坦互掐的两年。
56、笛卡儿的哲学思想具有划时代的意义,一方面摆脱了经院哲学的盲目教条主义,转而推崇理性;另一方面开启了哲学的新思潮,为后来的哲学奠定了良好的基础,所以后人称他为“近代哲学之父”。故事最后的真相这位伟大的人物终于敌不过羸弱的身体,于54岁时去世。他暮年那段“忘年恋”的真相是这样的:1649年冬天,笛卡儿旅游到北欧的瑞典,瑞典年轻的女王(不是公主)很喜欢他的课(哲学课,非数学课),而且上课时间必须是从早上5点就开始。在正常情况下,这个时间笛卡儿正躺在床上思考问题,为此笛卡儿不得不改变自己的生活习惯以迎合女王。第二年,他因严寒感染肺炎去世。
57、在笛卡尔的带领下,克里斯汀走进了奇妙的坐标世界,她对曲线着了迷。每天的形影不离也使他们彼此产生了爱慕之心。
58、他觉得这是一个无可辩驳的事实:若我思,则我是也。即使我认为的那些都是假的或虚幻的,但思想本身是不容置疑的。如果这个“邪恶天才”愚弄了我,那只是因为我的存在。总之,只要我思考,我就是一个存在的本体。而我头脑中的那个“邪恶天才”就永远无法抑制和取消我的存在。
59、笛卡尔二维坐标系里的桃心公式:r=a(1-sinθ)
60、在三维坐标系中,Z轴的正轴方向是根据右手定则确定的。右手定则也决定三维空间中任一坐标轴的正旋转方向。
61、坐标方法在日常生活中用得很多。例如象棋、国际象棋中棋子的定位;电影院、剧院、体育馆的看台、火车车厢的座位及高层建筑的房间编号等都用到坐标的概念。
62、1649年,斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。几天后,他意外的接到通知,国王聘请他做小公主的数学老师。跟随前来通知的侍卫一起来到皇宫,他见到了在街头偶遇的女孩子。从此,他当上了小公主的数学老师。
63、(数学故事)数学文化|《九章算术》第3讲名家解读(上)
64、(数学故事)数学文化|《九章算术》第4讲名家解读(下)
65、这最后一封信上没有写一句话,只有一个方程:r=a(1-sinθ).国王看不懂,以为这个方程里隐藏着两个人不可告人的秘密,便把全城的数学家召集到皇宫,但是没有人能解开这个函数式。
66、上面的三个方面都是建立在已知点的坐标基础上求线段长,直角坐标系的好处是建立线段长和坐标之间的相互转化关系,所以很多时候我们还需要利用线段长来求坐标。
67、有一天,笛卡尔(1596—16法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如也可以用空间中的一个点P来表示它们。同样,用一组数(a,b)可以表示平面上的一个点,平面上的一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。无论这个传说的可靠性如何,有一点是可以肯定的,就是笛卡尔是个勤于思考的人。这个有趣的传说,就象瓦特看到蒸汽冲起开水壶盖发明了蒸汽机一样,说明笛卡尔在创建直角坐标系的过程中,很可能是受到周围一些事物的启发,触发了灵感。
68、笛卡尔的主要贡献在数学方面,引入坐标系把代数几何化是最大功绩。
69、通过之前几何中对于中点的处理方式,我们可以利用中点构造全等来处理,如下图所示,我们可以构造△APM≌△BPN就可以解决。
70、根据上面的记述,1650年的时候克里斯汀公主已经在王位上坐了18年了,事实上克里斯汀生于1626年,1632年她老爹阵亡的时候以假定继承人的身份继承了王位。
71、当时,欧洲大陆正在流行黑死病。身体孱弱的笛卡尔回到法国后不久,便染上重病。在生命进入倒计时的那段日子,他日夜思念的还是街头偶遇的那张温暖的笑脸。
72、相反,笛卡儿提倡的是“普遍怀疑”:“但凡我没有明确地认识到的东西,我绝不把它当成真的来接受”。借此寻求可靠的知识基础并通过它们推理演绎出一切的知识,所以称为第一哲学,是个起点。
73、受到蜘蛛结网的启发,笛卡尔发现,可以把蜘蛛看作一个点,而它在空间中运动的每一个位置都可以通过一组确定的数字来表达。笛卡尔把墙角看作一个点,并把它称为“原点”,而从墙角延伸出的三条线——两条水平方向的线,一条垂直方向的线——就像三条两两垂直的数轴。
74、做这类题目的时候关键要画图,要通过线段长来体现坐标,更重要的是由线段长求坐标有时需要讨论。线段平行于y轴的例子我就不再举了。特别强调的是:例题一是我们解决这一章所有问题的基础,就是所有的问题都必须转化为横着和竖着的线段来求解。
75、 几天后他收到通知,国王让他做公主的数学老师,谁知相差了34岁的笛卡尔和公主竟然相爱了,国王发现后大为震怒,下令处死了笛卡尔。
76、(数学故事)少年,考考你!用直尺和圆规画出正十七边形!
77、公主的数学在笛卡尔的悉心指导下突飞猛进,他们之间也开始变得亲密起来。在笛卡尔的带领下,克里斯汀走进了奇妙的坐标世界,她对曲线着了迷。每天的形影不离也使他们彼此产生了爱慕之心。在瑞典这个浪漫的国度里,一段纯粹、美好的爱情悄然萌发。
78、 笛卡尔回法国后不久便染上重病,他日日给公主写信,因被国王拦截,克里斯汀一直没收到笛卡尔的信。笛卡尔在给克里斯汀寄出第十三封信后就气绝身亡了,这第十三封信内容只有短短的一个公式:r=a(1-sinθ)。国王看不懂,觉得他们俩之间并不是总是说情话的,将全城的数学家召集到皇宫,但没有一个人能解开,他不忍心看着心爱的女儿整日闷闷不乐,就把这封信交给一直闷闷不乐的克里斯汀。
79、其后几年中,相差34岁的笛卡尔和克莉丝汀相爱,国王发现并处死了笛卡尔。在最后笛卡尔写给克莉丝汀的情书中出现了r=a(1-sinθ)的数学坐标方程,解出来是个心形图案,就是著名的“心形线” 。这封情书最后被收录到欧洲笛卡尔博物馆中。
80、她知道恋人依旧爱着她,只是不知道他们已经阴阳相隔了。
81、 心形线的平面直角坐标系方程表达式分别为:
82、拿到信后,格里斯汀欣喜若狂,立即明白了笛卡尔的意图。她找来纸和笔,把方程图形画了出来,感动的泪水也随之不停地涌了出来。